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Abstract
Latency-associated nuclear antigen (LANA) is encoded by the Kaposi’s sarcoma (KS)-associated
herpesvirus (KSHV) open reading frame 73. LANA is expressed during latent KSHV infection of
cells, including tumor cells, such as primary effusion lymphoma, KS and multicentric Castleman’s
disease. Latently infected cells have multiple extrachromosomal copies of covalently closed
circular KSHV genomes (episomes) that are stably maintained in proliferating cells. LANA’s best
characterized function is that of mediating episome persistence. It does so by binding terminal
repeat sequences to the chromosomal matrix, thus ensuring episome replication with each cell
division and efficient DNA segregation to daughter nuclei after mitosis. To achieve these
functions, LANA associates with different host cell proteins, including chromatin-associated
proteins and proteins involved in DNA replication. In addition to episome maintenance, LANA
has transcriptional regulatory effects and affects cell growth. LANA exerts these functions through
interactions with different cell proteins.
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Kaposi’s sarcoma-associated herpesvirus
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) or human herpesvirus 8, a γ-2
herpesvirus, is the most recently discovered human herpesvirus [1,2]. Viruses related to
KSHV (other γ-2 herpesviruses) are found in many mammalian species (e.g., herpesvirus
saimiri [HVS; New World monkeys], murine γ herpesvirus 68 [rodents] and rhesus
rhadinovirus [Old World monkeys]) suggesting that these viruses are ancient and have co-
evolved with their hosts (for reviews see [3,4]). The KSHV genome is co-linear with other
γ-2 herpesviruses, and similar to the human γ-1 herpesvirus, Epstein–Barr Virus (EBV).
These viruses share a common genomic organization and blocks of genes have analogous
roles in the viral life cycle. KSHV encodes approximately 75 genes, of which some are
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novel and some are homologs of known cellular genes. Importantly, KSHV and EBV are
important tumorigenic agents in immunosuppressed individuals, such as transplant
recipients and HIV/AIDS patients.

KSHV is tightly associated with KS, primary effusion lymphoma (PEL) and multicentric
Castleman’s disease (an aggressive lymphoproliferative disorder). KS remains the most
prevalent tumor associated with HIV/AIDS patients [5]. Cell-mediated immunity plays a
role in controlling the disease. Notably, KS lesions can regress with immune reconstitution
by reducing immunosuppressive therapy in transplant recipients or by reconstitution of the
immune system with HAART in AIDS patients [6–9].

A particularly aggressive form of KS occurs in African children and accounts for
approximately 2–10% of all cancers in children in eastern and southern Africa [10–12].
KSHV seropositivity precedes KS and KSHV is found in all KS lesions in the presence or
absence of HIV co-infection [8,13]. The seroprevalence of KSHV varies from
approximately 50% of men who have sex with men to approximately 5% in the general
population of the USA to 30–80% in endemic regions (for epidemiological studies see
[8,11,13–18]). Serological assays are dependent upon the detection of different KSHV
antigens, often including the protein encoded by open reading frame (ORF) 73, termed
latency-associated nuclear antigen (LANA).

LANA is one of only a few KSHV-encoded proteins expressed during latency, which is the
primary form of infection in both the normal host and in tumors [8,19,20]. LANA is
approximately 1162 amino acids in length. A large repetitive region of acidic and glutamine-
rich repeats comprise the middle of the protein separating the LANA N- and C-terminal
regions (Figure 1). Heterogeneity in the length of the internal repeat region of LANA has
been noted between KSHV isolates [21]. Some orthologs of LANA do not contain the
internal repeats (e.g., murine γ-herpesvirus 68) (Figure 2), whereas other LANA orthologs,
such as that of HVS, lack a proline-rich region [21–23]. The LANA ortholog of
retroperitoneal fibromatosis herpesvirus, the homolog of KSHV that infects the pig tailed
macaque, contains both a proline rich region and central acidic repeats, similar to LANA
[24–26]. The N-terminal region of LANA contains a proline-rich region and associates with
many chromatin associated proteins (Table 1). LANA amino acids 5–13 encode a
chromosome binding motif that binds histones H2A/H2B [27]. The C-terminal region of
LANA contains a unique leucine-rich domain and another repeat region, followed by unique
sequence and associates with a number of host cell proteins and chromosomes (Table 1).
The unique C-terminal LANA region self-associates to bind DNA and recognizes a specific
DNA sequence within the terminal repeat (TR) region of KSHV. Many functions have been
ascribed to the KSHV-encoded LANA, including episome persistence, transcriptional
activity and growth effects on the cell.

LANA associates with chromosomes & KSHV TR DNA to maintain KSHV
episomes

In tumors and latently infected cells, the KSHV genome (~200 kb) persists as a multiple
copy (10–50 copies per cell), covalently closed circular extrachromosomal plasmid
(episome). Only a small subset of KSHV genes are expressed in latent infection of PELs,
including LANA, v-FLIP and v-cyclin, which are expressed from the same alternatively
spliced transcript. Several viral miRNAs are also expressed in KSHV latently infected cells
[28,29].

Episomes must overcome two major obstacles to persist in proliferating cells. Episomes
must replicate prior to each cell division to avoid loss in copy number. In addition, episomes
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must segregate to newly formed nuclei after mitosis to avoid being destroyed in the
cytoplasm. LANA overcomes both of these obstacles by mediating replication of KSHV
DNA, and segregating viral episomes to daughter nuclei.

During mitosis, LANA partitions replicated viral episomes to daughter cells. This is
accomplished by LANA’s ability to simultaneously bind host cell chromosomes and viral
TR DNA sequences (Figure 3) [30–32]. Notably, the TR sequences account for
approximately 25–30% of the KSHV genome, likely due to their role in episome
persistence. The TR sequence of herpesviruses contains elements required for packaging the
DNA into the nucleocapsid. Binding of a virally encoded gene product (LANA) to the TR to
mediate episome persistence and replication is an additional and novel function for this
element. Studies related to the epigenetic markers at the TR sequence may provide further
insights into the relevance of this sequence in herpesviruses and into the role of host cell
proteins that are recruited to it. Post-translational histone modifications provide scaffolds for
protein assembly in many cellular processes including transcriptional activation and
repression (chromatin remodeling), and DNA repair and replication. Histone modifications
of heterochromatin, including H3K9me2, are found at the TRs of HVS [33]. Other histone
marks implicated in transcriptional activation at the HVS TRs are dimethyl H3K4, and at
both the HVS and KSHV TRs are H3K9ac [34,35]. Further evaluation of histone
modifications at the TR would be of interest, as LANA-associated proteins include Hp1α
and BRD4, which bind methylated and acetylated histones, respectively. Hence, the
epigenetic modifications and the recruitment of cellular factors at the TR play a role in the
life cycle of KSHV.

Chromatin-binding domains of LANA are essential for LANA-mediated episome
persistence since mitotic chromosome binding is necessary for LANA tethering of episomes
[30,31,35–38]. Both the N- and C-terminal regions of LANA bind chromatin (Figure 3). N-
terminal LANA provides the dominant chromosome attachment region. Amino acids 1–32
of LANA diffusely distribute over chromatin and so LANA was speculated to interact with
histones [31,38]. Further characterization of this interaction revealed that this N-terminal
region of LANA binds to an acidic pocket at the interface of histones H2A and H2B [27,39].
Interestingly, this histone pocket also binds IL-33, suggesting that this may be a docking
station that is underappreciated [40]. Full length LANA associates with chromosomes in the
presence and absence of viral DNA sequences [41]. In the absence of episomes, the staining
pattern of LANA exhibits broad staining of mitotic chromosomes, while in the presence of
viral DNA LANA localizes to punctate foci at the sites of KSHV episomes [41]. This likely
occurs as a result of C-terminal LANA binding to multiple high-affinity binding sites on
KSHV TR DNA while simultaneously binding chromosomes.

Other DNA tumor viruses, including EBV and the papilloma viruses, encode
nonhomologous genes with functions analogous to LANA [42,43]. For example, EBV has a
similar system for episome segregation and replication fostered by the EBV encoded
EBNA1 protein binding to the oriP DNA sequence of EBV [43–45]. The papilloma viruses
utilize E1 and E2 proteins to facilitate episome maintenance and replication; E2 binds
chromatin and tethers the genome to chromosomes [42,46–49]. Viral DNA and LANA
colocalize on mitotic chromosomes [41]. However, in cells that are co-infected with EBV
and KSHV, LANA and EBNA1 do not colocalize, suggesting differences in tethering
mechanisms [50]. In mitotic cells, C-terminal LANA can localize to pericentromeric regions
that do not associate with CenpA. This region of LANA is important for DNA binding and,
similar to the N-terminal region of LANA, has a role in chromosome binding and episome
persistence [37,51]. Colocalization of some LANA molecules with kinetechore-associated
proteins CenpF and Bub1 has been noted [52]. EBNA1, however, does not associate with
pericentromeric regions during mitosis but does appear as paired dots on sister chromatids,
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which coincide with EBV episomes [53,54]. Depending on the type, HPV E2 staining
appears to resemble LANA as pericentromeric or EBNA1 as paired dots [47,48]. Human
HPV E2 has been shown to associate with the spindle apparatus during mitosis; however,
LANA appears to depend on chromatin associations for partitioning to daughter cells.
Therefore, episomal DNA viruses have evolved mechanisms to facilitate association with
chromosomes to ensure that the virus is not lost during segregation of replicated
chromosomes with each cell division.

The C-terminal domain of LANA is the most conserved region among the LANA orthologs
(Figure 2 & 4) [26]. The TR DNA-binding domain of LANA is in the C-terminal region of
the protein encompassing amino acids 996–1139 [51,55–58]. C-terminal LANA self
associates and this self association is essential for DNA binding [56,59,60]. The structure of
LANA binding to the TR has not been solved. However, the DNA-binding domains of EBV
EBNA1 and HPV E2 have been crystallized bound to their respective DNA-recognition
sequences [42,61,62]. Remarkably there is structural homology between the EBNA1 and E2
DNA-binding domains, despite the absence of sequence homology. Software modeling
studies predict structural similarities between the DNA-binding domain of LANA and
EBNA1, and by extension, E2, suggesting either evolution from a common ancestor or
convergent evolution [32].

The C-terminal domain of LANA also associates with chromatin at pericentromeric regions,
juxtaposed to CENPA, and occasionally at peritelomeric regions, and this association with
chromatin assists in episome persistence [37,51]. Interestingly, a number of LANA-
associated proteins localize with pericentromeric regions of chromosomes or are
heterochromatin-associated proteins. These include MecP2, Sin3A, HP1α, ORC2, ORC6
and SUV39H1 [63–67], some of which associate with C-terminal LANA. It is unclear if
LANA associates with these interacting proteins in a cell-cycle dependent manner given the
varied functions of these LANA-associated proteins (Table 1).

The association of the pericentromeric protein, MecP2, and the HVS ORF73 is important for
episome persistence. Knockdown of Mecp2 using siRNA inhibited HVS episome
persistence [68]. MeCP2 is a DNA-binding protein that recognizes methylated cytosine
residues and is implicated in both transcriptional repression and activation [69]. While the
C-terminal region of HVS ORF73 (LANA homolog) associates with MeCP2, the N-terminal
and C-terminal regions of KSHV LANA were found to associate with MeCP2 [63,66].
MeCP2 and HVS ORF73 associate with pericentromeric regions of chromosomes. Stuber et
al. found that MecP2 was scattered from chromocenters in mouse cells expressing LANA
[70], although Matsumura et al. found that MecP2 relocalized LANA to chromocenters in
mouse cells [63,66]. It is curious that MeCP2 can associate with DAXX (an N-terminal
KSHV LANA-associated protein, see Table 1) and ATRX complexes of proteins, which
have recently been implicated in remodeling of chromatin by incorporation of histone H3.3
at pericentric and telomeric loci of mouse embryonic stem cells [71]. Therefore, many
cellular processes may be affected by LANA and its binding partners in KSHV-infected
cells.

There is strong evidence that LANA is required for episome maintenance. Firstly, cells
stably expressing LANA can maintain TR-containing plasmids as an episome, whereas cells
that do not express LANA cannot [30,32,41,55,58,72–74]. Knockdown of LANA using
siRNAs or genetic deletion of LANA from a bacterial artificial chromosome (BAC)
containing the viral genome leads to a loss of episomes [75–78]. Genetic deletion of ORF73,
the LANA homolog, from the related murine γ-herpesvirus 68 viral BAC, alters the
pathophysiology in infected mice [79–82]. The absence of ORF73 leads to a lack of viral
spread and latency in the splenic compartment. In addition, Paden et al. demonstrated that
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murine γ-herpesvirus 68 is integrated or linear in the absence of ORF73 in the B cell
compartment, suggesting that LANA may be required for ligation and circularization of viral
DNA, in addition to episome persistence [82]. Taken together, these data support the role of
LANA in episome persistence.

The art of episomal maintenance and replication by viruses has many practical uses. For
example, episomal vectors providing LANA or EBNA1 in cis or trans can be used for gene
expression in the absence of integration [83]. This system, using EBNA1, has been used to
express genes in fibroblasts to promote induced pluripotent stem cells, without the caveat of
other expression systems that integrate into the host genome, indicating that episomal
systems may prove useful for gene therapy [84]. Episomal systems have also been used for
protein interaction studies [85]. Absence of LANA, and so absence of a mechanism for
latency, may also prove useful in vaccine development [75].

LANA mediates DNA replication of KSHV episomes
LANA-mediated TR DNA replication is essential for episome persistence. In the absence of
episome replication, KSHV DNA is rapidly lost from proliferating cells. Since only a few
viral proteins are expressed in latent infection, and these do not include a viral-encoded
DNA polymerase, host cell DNA replication machinery is used during latency to replicate
episomal DNA. Cell replication machinery must assemble on the viral episome. Proteins
associated with origins of DNA replication including ORC2, ORC3, ORC5 and MCM have
been shown to be associate with glutathione-S-transferase-tagged fusion proteins of LANA
or at the terminal repeat region by chromatin immuno-precipitation, suggesting that the
terminal repeat region of KSHV may be an origin of replication [35,67,86]. Replication
bubbles have been described for the EBV episome using 2D gel analyses or single molecule
analysis of DNA, and the initially described origin of replication termed ‘oriP’ binds
EBNA1. However, multiple origins of replication have now been described for EBV and
KSHV, suggesting that multiple origins of replication may exist for DNA viral episomes
[87–89]. Using Gardella gel analysis or the methyl-DNA sensitive restriction endonuclease
DpnI and Southern blotting, it was shown that plasmids containing the TR sequence
replicate in the presence of LANA but not in the absence of LANA [30,32,74,86,90].
Mutations in the N-terminal chromosome-associated region, encompassing amino acids 4–
32 of LANA, indicate that these residues are critical for DNA replication as ascertained by
DPNI sensitivity assays of TR-containing plasmids and Gardella gel analysis [36]. This
could be related to priming the association of replication complexes, or for proper
localization of the episome to replicate. Deletion of, or mutations within, amino acids 4–32
can greatly reduce or abolish episome persistence and replication as demonstrated by
Gardella gel analyses and methylation sensitive restriction endonuclease digestion (DpnI) of
TR-containing plasmids [36,90]. Similar to results described for EBNA1, the N-terminal
region of LANA can be replaced by histone H1 and chromatin binding and replication of
plasmids containing the terminal repeat are sustained [91,92].

C-terminal LANA binds TR DNA and this binding is essential for DNA replication and
episome persistence. LANA binds specifically to a sequence within the TR [30,56,58,59,93].
LANA binds co-operatively to two adjacent binding sites located within each TR unit, a
high-affinity site and a lower-affinity site. LANA binds to the high-affinity site with a kd of
approximately 1.51 nm [59]. Near these two binding sites is a 32 bp GC-rich element and
together they form the minimal LANA DNA replication element [55]. LANA binding to its
TR-binding site is essential for DNA replication and episome persistence [56]. Similar to
EBNA1, the LANA DNA binding domain located between residues 996–1139 must self
associate to bind its recognition sequence [56,60]. Specific LANA residues important for TR
binding within this region have been mapped by alanine substitution mutagenesis [51,94].

Ballestas and Kaye Page 5

Future Microbiol. Author manuscript; available in PMC 2013 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using a biotinylated TR probe with the LANA recognition sequence, Hu et al, identified 30
proteins including SSRP1 [95]. SSRP1 is a member of the FACT complex, which is
involved in histone–histone and histone–DNA interactions involving replication,
transcription and DNA repair (for review see [96]). Another LANA-associated protein
involved in latency, nucleophosmin (NPM), is also a part of the FACT complex [97]. RNAi
mediated knockdown of SSRP1 diminished LANA-mediated replication of TR-containing
plasmids, suggesting the FACT complex may be involved in LANA-mediated functions of
replication. More studies regarding LANA and replication of KSHV episomes are required.

LANA & transcription
Several studies have examined gene expression levels by microarray analyses in KSHV-
infected endothelial cells or hematopoietic cells. Infection with KSHV alters transcriptional
signatures [98–106]. Other studies have focused on the effects of a single KSHV gene, such
as LANA, on gene expression. Telomerase-immortalized endothelial cells, transduced with a
retroviral vector containing LANA, were shown to repress approximately 80 genes as
compared with empty vector control cells [107]. By chromatin immunoprecipitation, LANA
was shown to bind to the promoters of some of the identified repressed genes including
CDH13, CREG and CCND2. It was postulated that this repression was at the transcriptional
level and due to the induction of methyltransferase activity recruitment by LANA. Cytosine
methylation of CpG islands is felt to result in silencing of promoters, silencing of
transposons, monoallelic expression of imprinted genes and X-chromosome inactivation (for
reviews see [108–110]). CpG islands are found in promoters of many genes including some
viral genes. Nuclear cytosine methyltransferase enzymes of eukaryotes include Dnmt1,
Dnmt3a and Dnmt3b. Maintenance methylation is attributed to Dnmt1, which preferentially
recognizes hemimethylated DNA during semiconservative replication [111,112]. Dnmt3a
and DNMT3b have a role in the methylation of repeated sequences, such as transposons and
pericentric repeats [113]. Histone-modifying enzymes and chromatin remodeling factors
also associate with DNA methyltransferases. Dnmt3a, a de novo DNA methyltransferase,
was increased in the chromatin-associated fraction in the presence of LANA [107].
Bacterially expressed glutathione-S-transferase-LANA and in vitro translated DNMTs were
shown to interact and epitope-tagged Dnmt3a recruitment to the CCND2 promoter was
enhanced in the presence of LANA. In addition, LANA was found to associate with
DNMT3a by yeast two-hybrid analyses [63]. Methylation of the TGFβII receptor promoter
element was also noted in the presence of LANA but not in the absence of LANA [114].
These data suggest that epigenetic factors, including DNA methylation and chromatin
remodeling, may be involved in epigenetic reprogramming by LANA.

Transcriptional profiling of uninfected BJAB B lymphoma cells in the presence or absence
of LANA indicates that LANA expression has an effect on transcription [102,115]. Several
interferon responsive genes were induced approximately three-fold by LANA, including
STAT1 and Staf-50. BJAB cells with a doxycycline inducible LANA were shown to affect
the expression of approximately 186 genes [115]. Many of these genes are implicated in Rb/
E2F-dependent pathways and WNT signaling. Several other studies demonstrate that LANA
can induce or repress transcription using various promoter reporter constructs [102,107,115–
120]. LANA was shown to activate its own promoter, SRE, SP1, ATF, CAAT and AP1
promoters, but repress an HIV LTR promoter. In terms of latency, LANA transactivates its
own promoter [121]. LANA has also been shown to bind the KSHV lytic transactivator
ORF50 (Rta), the ORF50 promoter, and to repress ORF50 expression as a mechanism to
inhibit initiation of the viral lytic life cycle and so maintain latency [23,122,123].

LANA’s association with the Mediator complex suggests that LANA can recruit the polII
transcriptional machinery to activate transcription [117]. Consistent with this observation is
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the association of LANA with transcriptional activators including CBP, CREB2, c-jun,
KLIP, c-myc, Sp1, SRF, Stat3, Rb, Hif1α, KZLP and Tat (Table 1) [117,119,124–134].
Other transcriptional repressors like CIR, I-mfa, Sap30a, Sin3a and Jκ, also interact with
LANA [63,64,134–136]. These interactions may have effects on viral persistence,
transcription and growth transformation [63–65,137,138]. These data surrounding LANA’s
ability to repress or induce transcription may be at least partially dependent upon the cell
line used, concentration-dependent effects of LANA expression and the diversity of
reporters examined. Somewhat lacking is a clear connectivity between the number of
reported transcriptional activators or repressors with which LANA associates and roles they
play in the viral life cycle.

LANA & effects on cell growth
Control of cell cycle checkpoints and inhibition of apoptosis are hallmarks of proliferating
tumor cells including PELs and KSHV-infected KS spindle cells. The association of LANA
with many proteins involved in cell cycle regulation suggests that LANA promotes cell
survival. For example, LANA prolongs the lifespan of HUVECS [139]. Data gathered from
protein interaction studies support the role of LANA in cellular transformation as certain
LANA-associated proteins can affect cell growth. For example, the retinoblastoma protein
associates with LANA [133]. Several studies implicate LANA in activating E2F-dependent
reporters or E2F-dependent genes [115,140]. LANA induces the expression of Id1 (inhibitor
of DNA binding) at the mRNA and protein levels [118]. Since Id proteins have effects on
cell cycle regulation, this may be one mechanism of LANA-mediated proliferation of
KSHV-infected cells. Collectively, these data implicate LANA in increasing the replicative
function of cells.

In addition, LANA associates with, and has effects on, the prototypical tumor suppressor
p53 [79,138,141–144]. LANA inhibits p53-dependent transcription and apoptosis.
Significantly, mutations in the p53 gene were not found in primary KS samples and
functional p53 activity is detected in PEL cell lines [145–148]. The presence of wild-type
p53 in KSHV-infected PEL cells suggested that small molecule inhibitors of p53–MDM2
interactions, like nutlin3a, may affect PEL growth. Using gel filtration analyses to examine
molecular complexes, nutlin3a interfered with the formation of MDM2–p53–LANA
complexes. Nutlin3a induced p53-dependent gene transcription, and caused apoptosis of
PEL cells [149,150]. These findings demonstrate that LANA modulates p53-dependent
pathways to prevent cell cycle arrest and apoptosis.

Many cellular processes associated with prolonged cellular survival are affected by LANA.
Expression of LANA in mice can result in lymphoma [151]. The LANA promoter was
found to function in CD19+ B cells but not CD3+ T cells in the spleen and bone marrow of
transgenic mice [152]. Further studies revealed that LANA enhanced B cell responses to
antigen in mice expressing the LANA transgene in B cells [153]. Prolonged cellular
proliferation is associated with telomerase expression and LANA is an activator of
telomerase reverse transcriptase expression [119]. LANA affects the stabilization of the c-
myc oncogene by reducing the level of phosphorylation at T58 of c-myc, and protecting the
phosphoylation of c-myc at S62. This LANA function promotes c-myc transcriptional
activity and growth transformation properties [125,130]. Other signaling pathways
associated with cancer, such as Notch and WNT pathways, are affected by LANA. LANA
influences WNT signaling by nuclear trapping of GSK3β and stabilizing β-catenin [154–
157], although this mechanism was questioned in one report [158]. LANA’s effects on cell
growth may be mediated by increases in survivin expression, an inhibitor of apoptosis [159].
RNAi-mediated knockdown of survivin affects the growth rate of KSHV-infected cells.
LANA also associates with the oncogenes Pim1 and Pim3 [160]. These oncogenes are
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elevated in LANA-expressing cells. LANA activates the Pim1 promoter, and LANA is
phosphorylated by Pim kinases [160,161]. Proliferation of LANA-expressing cells and
control cells was downmodulated in cells expressing shRNAs to Pim1, suggesting that Pim1
can have affects on cell growth in the presence of LANA. However, Pim1 and Pim3 were
found to associate with LANA in the lytic cycle and not in latent cells, implicating a
complex role of these kinases in posttranslational modifications of LANA and in the viral
life cycle [160]. LANA may stabilize HIF1α [126,142]. In so doing, LANA likely
contributes to the Warburg effect, shifting the profile of metabolic pathways upon which
KSHV-infected proliferating cells depend [162].

LANA has also been described to function as a component of the EC5S E3 ubiquitin ligase
complex using unconventional suppressor of cytokine signaling box-like motifs to target p53
and von Hippel–Lindau for degradation, which leads to a favorable environment for cell
growth [163]. LANA’s effects on p53 and von Hippel-Lindau protein stability have been
questioned [158]. Notably, murine γ-herpesvirus 68 ORF73 has also been described to
assemble an EC5S E3 ubiquitin ligase to regulate NF-κb [164].

BRD4 associates with LANA and the murine γ-herpesvirus 68 ORF73 [165,166].
Bromodomain proteins have conserved structures that recognize acetylated histones or
acetylated proteins. BRD proteins have roles in cell cycle regulation and certain cancers
exhibit fusion proteins (translocations) with BRD family members [116,167–172]. LANA
represses BRD4-induced activation of the cyclin E promoter [116]. Interestingly, the
EBNA1 gene of EBV and the E2 protein of HPV also associate with BRD4, in part to
mediate chromosome association and episome persistence (E2) and transcriptional activation
(EBNA1) [42,49,120,173–175]. In fact, a BRD4 peptide fused to tat, to promote nuclear
localization, inhibits BRD4 and HPV E2 association and ablates chromosome association.
Mutations in E2 that inhibit association with BRD4 also inhibit transcriptional activation
[42,176]. Taken together, these data suggest a role for BRD4 in the life cycle of at least
some DNA viruses with mechanisms of transcription, chromatin association, and episome
persistence.

Conclusion
In summary, LANA’s functions are diverse within the viral life cycle of KSHV. LANA’s
best characterized functions include its critical role in the maintenance of latency, episome
replication and episome persistence. LANA serves as a hub for many host cell interacting
proteins. These associated proteins have functions in DNA replication, transcriptional
regulation and growth control, and lend insight into the active and multifunctional role of
LANA in many cellular processes. Understanding LANA’s role in modifying or adapting
host cell protein function will lead to a better understanding of viral latency and
oncogenesis.

Future perspective
Viral proteins like LANA, involved in episomal maintenance and replication, are intriguing
from an evolutionary perspective. The related γ-2 herpesviruses demonstrate species
specificity, with some divergence of virus sequence and gene repertoire relating to their
hosts, as well as differences in pathology. As seen with KSHV and other viral-driven
tumors, during times of immunosuppression, progression of viral associated pathology,
including malignancy, can occur. Understanding critical host cell pathways that are
deregulated during immunosuppression that lead to KSHV tumors should reveal critical
immune components for viral-mediated tumor suppression. Understanding how LANA
deregulates many host cell proteins may also lead to a better understanding of cellular
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transcriptional and growth control processes. Most importantly, since LANA is central to
KSHV latency, it serves as an opportune target to prevent and treat KSHV malignancies.
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Executive summary

Latency-associated nuclear antigen mediates Kaposi’s sarcoma-associated
herpesvirus episome persistence

▪ By binding to chromosomes and Kaposi’s sarcoma-associated herpesvirus (KSHV)
terminal repeats, latency-associated nuclear antigen (LANA) bridges KSHV
episomes to chromatin, ensuring proper segregation of episomes to daughter cells.

▪ By binding terminal repeat DNA and interacting with components of the
replication machinery, LANA assists in the replication of KSHV episomes.

Two LANA regions associate with chromosomes

▪ LANA N-terminal and C-terminal regions associate with chromosomes.

▪ The N-terminal region of LANA docks in the histone H2A/H2B pocket and is
essential for episome persistence.

LANA is a DNA-binding protein & binds KSHV terminal repeat sequence

▪ LANA self-associates to bind specific DNA sequences in the GC-rich KSHV
terminal repeat.

LANA associates with host cell proteins to modulate transcription, chromatin
remodeling & cell growth

▪ LANA promotes both transcriptional silencing and gene expression in different
contexts.

▪ LANA has effects on cell growth by inhibiting apoptosis and promoting
proliferation.

Ballestas and Kaye Page 20

Future Microbiol. Author manuscript; available in PMC 2013 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Latency-associated nuclear antigen protein
LANA consists of 1162 amino acids. Repetitive blocks of amino acids are noted (DE, QEP,
QREP, QDE and EQE). Residues 63–271 contain a proline-rich region. Residues 769–839
contain a leucine-rich repeat region.
D: Aspartic acid; E: Glutamic acid; L: Leucine; P: Proline; Q: Glutamine; R: Arginine.
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Figure 2. Schematic of latency-associated nuclear antigen and the ORF73 homologs
Similar regions between homologs of ORF73s from different γ-2 herpesviruses are indicated
and compared with KSHV LANA. KSHV LANA (Homo sapiens); (NP_572129), HVS
(squirrel monkey; NP_040275), HVA (spider monkey; NP_048045), RRV (rhesus macaque;
AAD21406), MHV68 (vole; NP_044913), RFHVMn (rhesus pig tailed macaque;
ABH07415).
Adapted from [26].
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Figure 3. Model of latency-associated nuclear antigen binding to Kaposi’s sarcoma-associated
herpesvirus episome and cellular chromosomes
The C-terminal region of LANA (C) mediates self-association, binds to KSHV terminal
repeat DNA in the KSHV episome, and binds to a putative protein (X) that associates with
DNA (light gray line). The N-terminal domain of LANA (N) binds to core histones H2A/
H2B, which are part of nucleosomes that also contain a H3/H4 histone tetramer.
KSHV: Kaposi’s sarcoma-associated herpesvirus; LANA: Latency-associated nuclear
antigen.
Adapted from [51].
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Figure 4. Amino acid alignment of the C-terminal regions of latency-associated nuclear antigen
(aa933–1162) and ORF73 homologs
Yellow shaded regions indicate conserved amino acids; green shaded amino acids indicate
conserved basic, acidic or hydrophobic residues; blue shaded regions Indicate conserved
residues between two or more ORF73 homologs. Alignment was made using Vector NTi
(Invitrogen, CA, USA).
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Table 1

Latency-associated nuclear antigen-associated proteins.

Interactor Name LANA binding site† Ref.

Transcription factors or chromatin-associated factors

BRD4 Bromodomain protein 4 1133–1143 [116,166]

CIR CBF1 interacting co-repressor 1–340 [64]

CBP/p300 cAMP response element binding protein 340–431, 950–1162 [128]

CREB2 cAMP response element binding protein 769–839 [129]

DAXX Death domain-associated protein 320–344 [177]

Dek DEcoRVK 986–1043 [63]

H1 Histone 1 1–1162 [31]

H2a/H2b Histones 2a and 2b 5–13 [27]

Hiflα Hypoxia inducible factor 1α 46–145 [126]

Hp1α Heterochromatic protein 1α 1047–1062 [65]

I-mfα Inhibitor of MyoD family α 995–1162 [135]

Jκ Immunoglobulin Jκ region recombination signal binding protein 990–1162 [136]

c-jun Oncogene 17 1–1162 [124]

KLIP KSHV LANA interacting protein 1–317 [132]

KZLP KRAB zinc finger binding protein 1–1162 [134]

MecP2 Methyl cytosine binding protein 2 1–15, 936–1162 [63,66]

Med25 Mediator 25 1–340 [117]

c-myc Avian myelocytomatosis vial oncogene homolog 1–1162 [125,130]

p53 p53 tumor suppressor 441–1162 [143]

Rb Retinoblastoma protein 803–990 [133]

Rta Replication and transcription activator 990–1162 [123]

Sap30α Sin3α-associated polypeptide 1–340 [64]

Sin3a Paired amphipathic helix protein Sin3a 1–340 [64]

Sp1 Specificity protein 1 1–1162 [119]

srf Serum response factor 1–1162 [117]

Stat3 Signal transducer and activator of transcription 3 933–1162 [131]

tat Transactivator protein 762–1162 [127]

Replication

NPM Nucleophosmin 1–1162 [97]

Orc1 Origin recognition complex 1 1–340, 762–1162, 1001–1068 [86,178]

Orc2 Origin recognition complex 2 762–1162, 1001–1068 [86,178]

Orc3, 4 & 6 Origin recognition complex 3, 4 & 6 762–1162 [86,178]

Orc5 Origin recognition complex 5 1–340, 762–1162 [86,178]

SSRP1 Structure-specific recognition protein 1 1–1162 [95]

Kinases

Gsk3β Glycogen synthase kinase 3β 241–275, 1133–1147 [154,158]
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Interactor Name LANA binding site† Ref.

Pim1 Proviral integration site MuLV 762–1162 [160]

Pim 3 Proviral integration site MuLV 1–1162 [160]

Ubiquitin related

Cul5 Culin 5 1085–1100 [163]

Elongin C Elongin C 212–222 [163]

FBW7/Sel10 F box WD40 domain protein 7 1052–1082 [179]

VHL Von Hippel–Lindau tumor suppressor 1–327 [163]

Enzymes

DNMT1 DNA methyltransferase 1 1–340 [107]

DNMT3A DNA methyltransferase 3A 1–15 [107]

DNMT3B DNA methyltransferase 3B 1–340 [107]

Suv39h1 Suppressor of varigation 39h1 275–467 [180]

Ung2 Uracyl DNA glycosylase 2 762–1162 [178]

Miscellaneous proteins

Bub1 Budding unhibited by benzimidazoles 1–340, 842–1162 [52]

CenpF Centromere protein F 1–340, 842–1162 [52]

MNDA Myeloid cell nuclear differentiation antigen 22–274 [181]

Numa Nuclear mitotic apparatus protein 762–1162 [182]

†
Numbers refer to amino acids of LANA (Genbank U75698) that have been mapped to interact with the stated protein. LANA: Latency-associated

nuclear antigen.
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